
COMP3161/COMP9164 Supplementary Lecture Notes

Data Types

Liam O’Connor Gabriele Keller Johannes Åman Pohjola

October 23, 2024

1 Composite Data Types

Up to now, we only discussed primitive data types, like integers boolean values, and function
types. This is not only an inconvenience, but it seriously restricts the expressiveness of the
language. For example, we cannot define a function which returns multiple values at once, or,
depending on the input, a boolean or an integer value. In this section we will extend MinHS to
have a type system that is able to encode more complex and interesting data types.

1.1 Products

Many languages include ways to group types together into one composite type - a struct in C,
a class in Java. In Haskell, we can bundle a fixed number of values of possibly different types
by simply using tuples. For example, the function

foo :: Int -> (Bool, Int)

foo x = (even x, x * x)

takes an int-value as argument and return a pair of a boolean and an integer value. In this
example, we can see that (,) is overloaded to be both a type constructor (in the type an-
notation, constructing the type pair of Bool and Int) and a data constructor (in the function
body, constructing a new value by bundling a boolean value and an int-value). Similarly, we can
construct tuples of (theoretically) arbitrary size in Haskell.1 More values can be bundled, if this
is for some reason necessary, by using nested tuples. There are also ways to define record types,
similar to C-structs in that the fields can be referred to by names, not just their position.

In MinHs, we keep it as simple as possible, and only introduce a pair constructor. The type
of pairs is called a product type, for reasons that will become clear later2. The type of the pair
of τ1 and τ2 is therefore written τ1 × τ2, in contrast to Haskell.

We also introduce a data constructor, (,) to MinHS, which produces values of a product
type:

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2
Γ ⊢ (e1, e2) : τ1 × τ2

Note that we can combine more than two types simply by using nested products: a type Int×
(Int× Int) bundling three integer values can be constructed with (3, (4, 5)).

1In practice, most compilers only support tuples up to some fixed size, but according to the standard, it should
not be less than 15.

2Product types are analogous to cartesian products in set theory, for those that are familiar with sets.

1

Once we have a pair value, how do we get each component out of it? We introduce a bit
more syntax for two destructors, fst and snd, which, given a pair, return the first or second
component of the pair respectively:

Γ ⊢ e : τ1 × τ2
Γ ⊢ fst e : τ1

Γ ⊢ e : τ1 × τ2
Γ ⊢ snd e : τ2

Evaluation rules are omitted as they are straightforward.

1.2 Sums

Sum types are less common than product types in programming languages, but they can be
simulated with tagged unions in C and interface inheritance in Java. In essence τ1 + τ2 allows
either a value of type τ1 or a value of type τ2, but not both. In Haskell, an equivalent definition
would be:3

data Sum a b = InL a | InR b

We will introduce similar constructors, InL and InR, for our sum type in MinHS:

Γ ⊢ e : τ1
Γ ⊢ InL e : τ1 + τ2

Γ ⊢ e : τ2
Γ ⊢ InR e : τ1 + τ2

Once again, we can combine multiple types to give n-ary sums via nesting.
Instead of function-like destructors for sum types, we will introduce a new Case expression,

similar to Haskell’s equivalent, which provides two alternative expressions. One for InL, and one
for InR. As an example:

recfun sumToProd :: (Int + Int -> Bool * Int) e

= case e of InL u = (False, u)

InR v = (True, v);

The abstract syntax of a case expression is as follows: Case τ1 τ2 e (x.e1) (y.e2), where the input
sum value e is of type τ1 + τ2, and e1 is the alternative for InL, and e2 is the alternative for InR.
Typing rules:

Γ ⊢ e : τ1 + τ2 x : τ1,Γ ⊢ e1 : τ y : τ2,Γ ⊢ e2 : τ

Γ ⊢ Case τ1 τ2 e (x.e1) (y.e2) : τ

Big step evaluation rules:

e ⇓ InL v e1[x := v] ⇓ r

Case τ1 τ2 e (x.e1) (y.e2) ⇓ r

e ⇓ InR v e2[y := v] ⇓ r

Case τ1 τ2 e (x.e1) (y.e2) ⇓ r

With this, we can also make a four-valued type: Bool+ Bool has values InL False, InR False,
InL True, InR True.

3The Haskell standard library calls this type constructor Either, and names the data constructors Left and
Right.

2

1.3 Unit Type

Could we define a type with only three values? At the moment, the smallest type we’ve got is
Bool, which has two values, and both products and sums of Bool give us a type too large with
four values.

The way we resolve this is to introduce a new type, called 1, sometimes written ⊤, which has
exactly one value - (). It can be thought of as the “empty” tuple, and corresponds to a void

type in C.
Typing rules are obvious:

Γ ⊢ () : 1

With this type, we can construct a type of three values using a sum type: The type 1+ (1+ 1)
has three values: InL (), InR (InL ()), InR (InR ()).

1.4 Empty Type

We add another type, called 0, that has no inhabitants. This can be useful in a function’s type,
as a function like Int → 0 indicates that the function will not return4.

Because it is empty, there is no way to construct it.
We do have a way to eliminate it, however:

Γ ⊢ e : 0

Γ ⊢ absurd e : τ

If I have a variable of the empty type in scope, we must be looking at an expression that will
never be evaluated. Therefore, we can assign any type we like to this expression, because it will
never be executed.

1.5 Type Isomorphism

The above type of three values could be represented as 1 + (1 + 1) as shown, but it could
also be represented as 1 + Bool (as it also has three values). We will define the notion of type
isomorphism to capture the similarity between these terms.

Formally, two mathematical objects A and B are considered isomorphic if there exists a
structure preserving mapping (or a morphism) f from A to B, and an inverse morphism f−1

from B to A such that f ◦ f−1 is an identity morphism IA from A to A (i.e f(f−1(x)) = x) and
f−1 ◦ f is an identity morphism IB from B to B (i.e f−1(f(y)) = y). It is analogous to bijection
in set theory or logic, and is often written as A ≃ B where A is isomorphic to B.

Seeing as types can be thought of as (slightly restricted) sets of values, we can construct such
mappings to show types A and B isomorphic if and only if A has the same number of values as
B.

As an example, we could map InL () to InL (), InR (InL ()) to InR False and InR (InR ())
to InR True (and vice-versa) and thus show that 1+(1+1) ≃ 1+Bool. Generally, it is sufficient
to show that the two types have the same number of values in order to show that they are
isomorphic.

As you have probably already realised, computing the size of types can be achieved easily by
using this function:

4Some functions are expected to not return, for example functions that throw exceptions.

3

|0| = 0
|1| = 1
|Bool| = 2
|Int| = 232

|τ1 × τ2| = |τ1| × |τ2|
|τ1 + τ2| = |τ1|+ |τ2|
|τ1 → τ2| = |τ2||τ1| for total, terminating functions only

1.6 Type Algebra

Since type equivalence is based simply on the number of values within the types, and sum and
product types correspond to addition and multiplication of type size, types follow all the same
algebraic laws as the natural numbers. Or in other words, the types form a commutative semiring.

Laws for (τ,+,0):

• Associativity: (τ1 + τ2) + τ3 ≃ τ1 + (τ2 + τ3)

• Identity: 0+ τ ≃ τ

• Commutativity: τ1 + τ2 ≃ τ2 + τ1

Laws for (τ,×,1)

• Associativity: (τ1 × τ2)× τ3 ≃ τ1 × (τ2 × τ3)

• Identity: 1× τ ≃ τ

• Commutativity: τ1 × τ2 ≃ τ2 × τ1

Combining × and +:

• Distributivity: τ1 × (τ2 + τ3) ≃ (τ1 × τ2) + (τ1 × τ3)

• Absorption: 0× τ ≃ 0

1.7 Curry-Howard Correspondence

Before moving on, let us gather all the typing rules we have defined so far, including typing rules
for λ-functions and application:

Γ ⊢ e : 0

Γ ⊢ absurd e : τ Γ ⊢ () : 1

Γ ⊢ e : τ1

Γ ⊢ InL e : τ1 + τ2

Γ ⊢ e : τ2

Γ ⊢ InR e : τ1 + τ2

Γ ⊢ e : τ1 + τ2 x : τ1,Γ ⊢ e1 : τ y : τ2,Γ ⊢ e2 : τ

Γ ⊢ (case e of InL x → e1; InR y → e2) : τ

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ (e1, e2) : τ1 × τ2

Γ ⊢ e : τ1 × τ2

Γ ⊢ fst e : τ1

Γ ⊢ e : τ1 × τ2

Γ ⊢ snd e : τ2

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2

x : τ1,Γ ⊢ e : τ2

Γ ⊢ λx. e : τ1 → τ2

4

If I remove all the terms, that is, everything between the ⊢ and the type, and just leave contexts
and types in the rules, I get something quite remarkable:

Γ ⊢ 0

Γ ⊢ τ Γ ⊢ 1

Γ ⊢ τ1

Γ ⊢ τ1 + τ2

Γ ⊢ τ2

Γ ⊢ τ1 + τ2

Γ ⊢ τ1 + τ2 τ1,Γ ⊢ τ τ2,Γ ⊢ τ

Γ ⊢ τ

Γ ⊢ τ1 Γ ⊢ τ2

Γ ⊢ τ1 × τ2

Γ ⊢ τ1 × τ2

Γ ⊢ τ1

Γ ⊢ τ1 × τ2

Γ ⊢ τ2

Γ ⊢ τ1 → τ2 Γ ⊢ τ1

Γ ⊢ τ2

τ1,Γ ⊢ τ2

Γ ⊢ τ1 → τ2

As it happens, the rules for our types correspond exactly to the rules of constructive propositional
logic!

The type 1 corresponds to True or ⊤, the type 0 corresponds to False or ⊥, sum types corre-
spond to disjunctions, and product types to conjunctions. Functions correspond to implication.

Γ ⊢ ⊥
Γ ⊢ P Γ ⊢ ⊤

Γ ⊢ P1

Γ ⊢ P1 ∨ P2

Γ ⊢ P2

Γ ⊢ P1 ∨ P2

Γ ⊢ P1 ∨ P2 P1,Γ ⊢ P P2,Γ ⊢ P

Γ ⊢ P

Γ ⊢ P1 Γ ⊢ P2

Γ ⊢ P1 ∧ P2

Γ ⊢ P1 ∧ P2

Γ ⊢ P1

Γ ⊢ P1 ∧ P2

Γ ⊢ P2

Γ ⊢ P1 → P2 Γ ⊢ P1

Γ ⊢ P2

P1,Γ ⊢ P2

Γ ⊢ P1 → P2

This means that constructing a well-typed program is equivalent to constructing a proof of the
proposition encoded by its type. Programs are proofs, and types are propositions.

This correspondence goes by many names, but is usually attributed to Haskell Curry and
William Howard. It is a very deep result, carrying through every aspect of programs and proving:

Programming Logic
Types Propositions

Programs Proofs
Evaluation Proof Simplification

It turns out, no matter what logic you want to define, there is always a corresponding λ-calculus,
and vice versa.

Constructive Logic Typed λ-Calculus
Classical Logic Continuations
Modal Logic Monads
Linear Logic Linear Types, Session Types

Separation Logic Region Types

5

Philip Wadler has written a much more detailed exposition of this correspondence in this very
readable paper, located here:

http://homepages.inf.ed.ac.uk/wadler/papers/propositions-as-types/propositions-as-types.pdf

He has also given a nice talk on the topic at Strange Loop in 2015:

https://www.youtube.com/watch?v=IOiZatlZtGU

Some examples of proofs of basic logical properties are given below:
To prove that A ∧ B → B ∧ A, i.e. commutativity of conjunction, we can just flip the order

of the values in the pair:
andComm :: A×B → B ×A
andComm p = (snd p, fst p)

We can prove transitivity of implication as well:

transitive :: (A → B) → (B → C) → (A → C)
transitive f g x = g (f x)

Transitivity of implication is just function composition.

1.7.1 Caveats

This correspondence is predicated on the condition that all functions we define have to be total
and terminating. Otherwise we get an inconsistent logic that lets us prove false things:

proof 1 :: P = NP
proof 1 = proof 1

proof 2 :: P ̸= NP
proof 2 = proof 2

Most common calculi correspond to constructive logics, not classical ones, so principles like the
law of excluded middle or double negation elimination do not hold:

¬¬P → P

It is possible to construct λ-calculi where they do hold, however for the purposes of this course,
we will concern ourselves primarily with constructive logics.

2 Recursive Types

What about if we wanted to write a linked list? In Haskell, this would be easily defined:

data ListOfInt = Cons Int ListOfInt

| Nil

In MinHS, however, we are stuck - we have no name by which we can introduce recursive
types. All types in MinHS are anonymous. What we want to be able to declare is the type
τ = (Int× τ) + 1 (which is isomorphic to the Haskell definition above).

6

To solve this, we introduce a new type system feature, called Rec (sometimes written µ). It
would allow a linked list type to be written as follows:

Rec t. (Int× t) + 1

We also need to introduce constructors and destructors for this Rec construct. We call them
Roll and Unroll. The typing rules for Roll are straightforward, and mostly uninteresting:

Γ ⊢ x : τ [t := Rec t. τ]

Γ ⊢ Roll x : Rec t. τ

Unroll, however, gives us an insight into how these recursive types actually work:

Γ ⊢ x : Rec t. τ

Γ ⊢ Unroll x : τ [t := Rec t. τ]

That is, when we Unroll a recursive type, the recursive name variable (t) is replaced with the
entire recursive type. Each Unroll eliminates one level of recursion.

We can define a value of our linked list type, written in Haskell as [3, 4], as follows:

Roll (InL ((3, (Roll (InL ((4, (Roll (InR ())))))))

Not very pretty, but isomorphic to the Haskell list.

3 Haskell Datatypes

MinHS’s type system, with these extensions, is now nearly as powerful as Haskell’s. To show
this, I will demonstrate a technique which gives an isomorphic type in MinHS to any (non-
polymorphic) type in Haskell. Suppose we have the following Haskell type:

data Foo = Bar Int Bool | Baz | Herp Foo

First, replace all data constructors with 1:

data Foo = 1 Int Bool | 1 | 1 Foo

Then, multiply the constructors with all of their arguments:

data Foo = 1× Int× Bool | 1 | 1× Foo

Then, replace all the alternatives with sums:

data Foo = 1× Int× Bool + 1 + 1× Foo

Apply algebraic simplification (usually just 1× x ≃ x):

data Foo = Int× Bool + 1 + Foo

Then, replace the recursive references (if any) with a Rec construct:

Rec t. Int× Bool + 1 + t

As can be seen from the above example, this technique will convert non polymorphic, non
parameterised Haskell types into isomorphic MinHS ones. A useful trick for your exam ;)

7

